
ABC: The Way It Should

Have Been Designed

Alan Mishchenko

Department of EECS, UC Berkeley

Industrial Supporters (since 2005)

� CAD tool companies
� Synopsys, Mentor, Cadence, Verific, Magma (Synopsys),

Atrenta (Synopsys), Jasper (Cadence), Oasys (Mentor)

� FPGA companies
� Xilinx, Altera, Synplicity (Synopsys), Actel (Microsemi), Abound

Logic (Lattice), Tabula

� System design companies
� IBM, Intel

� Plus grants from federal and industrial funding agencies
� NFS, NSA, SRC

3

Overview

� Introduction

� Hits and misses

� Lessons learned

� Front-end and back-end

� Optimization flow

� Data structures

� Programming

� Conclusion

Introduction

� Disclaimer: This presentation may be boring if one
does not develop or does not consider developing
an “industrial-strength academic tool” such as ABC

� ABC has a 15-year history

� It started as an academic tool and soon became
popular with industry (especially with start-ups)
as a replacement for SIS

� It is a hit-and-miss in terms of its usefulness

� This presentation shares the lessons learned

ABC Hits

� It is based on what we believe to be
cutting-edge research ideas

� It offers a low-cost and often competitive
implementation of fundamental algorithms

� AIG rewriting, tech-mapping, SAT sweeping,
retiming, equivalence checking, etc

� It is often fast and low-memory

� It is reliable (if we use it in a known way)

� It is actively developed and supported

ABC Misses

� Inadequate Verilog parser

� Does not natively support much of the

“industrial stuff” (complex flops, multiple

clocks, memories, design constraints, etc)

� requires elaborate workarounds to be useful

� Poor documentation

� A lot of redundant source code

Lessons: Front-End and Back-End

� Having a variety of formats is useful, but<

� Reading and writing Verilog is a must!

� If a general-enough Verilog parser cannot be

developed, integrate with Yosys

� Absolutely need well-documented APIs for

integrating with external tools!

� This has been addressed to some extent

Lessons: Optimization Flow

� AIG is a good unifying data-structure

� Do not hesitate to base computations on AIGs

� Need parametrizable optimizers

� Rather than having optimizations geared to a

specific representation (AIG/MIG/XMIG/etc)

� Need one generic cut-based tech-mapper

for all technologies (gates, LUTs, etc)

� Need to support the “industrial stuff”!

Lessons: Data Structures

� Develop a clean minimalistic data-structure

for each package (conversions between

data-structures are easy and fast)

� Reduce memory for large data-structures

and runtime will be reduced

� true about AIG, logic network, hierarchical netlist

� Whenever possible, use 32-bit integers

� a MiniSAT-like SAT solver is a good example

Lessons: Programming

� Strive for maintainability

� Minimize dependency between packages

� Strive for reproducibility

� Implement your own floating point number

� Strive for thread-safety

� Have no global and static variables

� Spend time to build a set of handy tools

� Do not stick with C (can mix C and C++)

Conclusion

� Talked about ABC

� Reviewed gains and losses

� Learned from past mistakes - hopefully ☺

Abstract

� Twelve years ago, in September 2005, the first public
version of ABC was released. It featured technology-
independent synthesis by DAG-aware rewriting,
technology mapping for standard cells and lookup tables,
and simple combinational equivalence checking, all
based on the And-Inverter Graphs (AIG) data-structure
used to unify the computation flow. In the coming years
ABC has been adopted as an optimization engine and a
research environment by a number of academic and
industrial users. The use that followed exposed a
number of shortcomings in the original design of
ABC. This talk focuses on what is present and, more
importantly, what is missing in ABC, and how ABC could
be redesigned to make it more versatile and user-
friendly. The motivation for this talk is to help academic
researchers maximize the usefulness of their tools and
set a new standard for future versions of ABC.

